Effect of Feed Supplementation with Bacillus coagulans on Nrf Gene Family Expression in Common Carp (Cyprinus carpio) under Long-Term Exposure to Cd2+

Author:

Jiang Zhou,Li Xuejun,Dong Chuanju

Abstract

Nuclear factor-E2-related factor (Nrf) belongs to the Cap ‘n’ collar basic leucine zipper (CNC-bZIP) family, which plays an important role in the resistance to oxidative stress in the body. In this study, 12 Nrf genes were identified in the common carp genome database. Comparative genomic analysis showed that the Nrf genes of common carp had significant amplification, confirming that the common carp had experienced four genome-wide replication events. Phylogenetic analysis showed that all common carp Nrf clustered with scleractinian fish Nrf, indicating that they were highly conserved during evolution. In addition, tissue distribution results showed that most Nrf genes had a broad tissue distribution but exhibited tissue-specific expression patterns, demonstrating functional differences after WGD events. At 30 and 60 days of Cd2+ stress, most of the Nrf genes showed an increase in expression compared with the control group, indicating that they played a key role in the organism’s response to oxidative stress. To find a suitable concentration of Bacillus coagulans to activate the Nrf genes, we added three different concentrations (2.0 × 107 CFU/g, 2.0 × 108 CFU/g, and 2.0 × 109 CFU/g) of B. coagulans into the feed and defined them as L1, L2, and L3 groups, respectively. We investigated the effect of different concentrations of B. coagulans in the feed on the expression level of Nrf genes in the intestine of common carp under Cd2+ stress at 30 and 60 days. The results showed that, compared with the control/stress group, the expression of different Nrf genes was improved to varying degrees at three concentrations, and the effect of the L2 group (2.0 × 108 CFU/g) was the best. This suggests that the L2 group is the optimum concentration for activating Nrf gene expression when subjected to heavy metal Cd2+ stress and may act as an activation switch with a prominent role in the body’s resistance to oxidative stress and immune response.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3