Cloning and Expression of Sox2 and Sox9 in Embryonic and Gonadal Development of Lutraria sieboldii

Author:

Lu Min,Xing Zenghou,Zhou Yurui,Xu Youhou,Peng Huijing,Zou Jie,Dan Solomon Felix,She Zhicai,Wang Pengliang,Liu Jinfeng,Qin Shaomin,Yang Jialin,Zhu Peng

Abstract

The Sox family plays essential roles as transcription factors in vertebrates; however, little is known about the Sox family in Lutraria sieboldii. L. sieboldii are pleasant to eat with a short growth cycle and have become one of the best bottom-seeded enrichment species in Guang Xi. In this study, Sox2 (named LsSox2) and Sox9 (named LsSox9) from L. sieboldii were cloned, and their expression patterns were analyzed. The length of the LsSox2 gene coding sequence was 1011 bp, encoding 336 amino acids, and LsSox9 was 1449 bp, encoding 482 amino acids. LsSox2 had its highest expression levels in the ovary, which were 356 times those in testis, whereas LsSox9 presented higher expression in testis, which was 6 times more highly expressed than in the ovary. LsSox2 exhibited the highest expression during the morula stage, which was 20 times that of the D-shaped larvae or zygote. LsSox9 exhibited two expression peaks, one at the four-cell stage and the other at the trochophore stage, while the lowest expression was in the zygote. LsSox9 was 73 times more highly expressed in the four-cell stage than in the zygote stage. During gonadal development, LsSox2 presented the highest expression in the mature ovary, which was 756 times more highly expressed than in mature testis. LsSox9 presented higher expression in testis at the emission stage which was 6 times more highly expressed than in the ovary. These results indicate that LsSox2 and LsSox9 may play important roles in embryonic and gonadal development.

Funder

Guangxi innovation driven development special funds

Guangxi Natural Science Foundation

Marine Science Program for Guangxi First-Class Discipline, Beibu Gulf University

College Students’ innovation training program

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3