The Effect of Knocked-Down Anti-Müllerian Hormone mRNA on Reproductive Characters of Male Nile Tilapia (Oreochromis niloticus) through Inhibition of the TGF-Beta Signaling Pathway

Author:

Yan Yue,Tao Yifan,Cao Zheming,Lu Siqi,Xu Pao,Qiang Jun

Abstract

Anti-Müllerian hormone (amh), an important regulator of gonad development in male teleosts, regulates the development and differentiation of germ cells. We performed transcriptional knock-down of amh in Nile tilapia (Oreochromis niloticus) using antisense RNA technology, resulting in down-regulation in the expression of amh transcription and Amh protein in males. Compared with the control groups, the fish in treatment groups with down-regulated amh had increased weight and an extremely significant decrease in the gonadosomatic index. Hematoxylin–eosin staining revealed impaired testis development and significant reductions in numbers of sperm. Serum estradiol levels were significantly increased, and the levels of testosterone, luteinizing hormone, and follicle-stimulating hormone were significantly decreased. RNA-sequencing analysis of the fish in the down-regulated amh and control groups identified 12,048 differentially expressed genes, of which 1281 were up-regulated and 10,767 were down-regulated. Kyoto Encyclopedia of Genes and Genomes analysis revealed that differentially expressed genes related to growth and development were mainly enriched in the Cell cycle, Endocytosis, TGF-beta signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Insulin signaling pathway, and MAPK signaling pathway. The RNA-sequencing data accuracy was verified by qRT-PCR analysis of the expression levels of selected differentially expressed genes. The abnormal TGF-beta signaling pathway may cause fish weight gain, testis dysplasia, and abnormal spermatogenesis: smad5, smad3a, tgfb2, tgfbr1b, gsdf, and amh were significantly down-regulated. These findings indicated that antisense RNA technology has strong application prospects and can specifically knock down amh in Nile tilapia, resulting in an abnormal TGF-beta signaling pathway, inhibiting testis development and inducing weight gain.

Funder

Central Public-interest Scientific Institution Basal Research Fund, CAFS and Central Public-interest Scientific Institution Basal Research Fund and National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3