Modelling Fish Growth with Imperfect Data: The Case of Trachurus picturatus

Author:

Neves AnaORCID,Vieira Ana Rita,Sequeira VeraORCID,Silva Elisabete,Silva Frederica,Duarte Ana MartaORCID,Mendes SusanaORCID,Ganhão RuiORCID,Assis Carlos,Rebelo RuiORCID,Magalhães Maria FilomenaORCID,Gil Maria ManuelORCID,Gordo Leonel SerranoORCID

Abstract

Growth modelling is essential to inform fisheries management but is often hampered by sampling biases and imperfect data. Additional methods such as interpolating data through back-calculation may be used to account for sampling bias but are often complex and time-consuming. Here, we present an approach to improve plausibility in growth estimates when small individuals are under-sampled, based on Bayesian fitting growth models using Markov Chain Monte Carlo (MCMC) with informative priors on growth parameters. Focusing on the blue jack mackerel, Trachurus picturatus, which is an important commercial fish in the southern northeast Atlantic, this Bayesian approach was evaluated in relation to standard growth model fitting methods, using both direct readings and back-calculation data. Matched growth parameter estimates were obtained with the von Bertalanffy growth function applied to back-calculated length at age and the Bayesian fitting, using MCMC to direct age readings, with both outperforming all other methods assessed. These results indicate that Bayesian inference may be a powerful addition in growth modelling using imperfect data and should be considered further in age and growth studies, provided relevant biological information can be gathered and included in the analyses.

Funder

Fundação para a Ciência e Tecnologia

European Maritime and Fisheries Fund MAR2020

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3