Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration

Author:

Holanda MarianaORCID,Wasielesky WilsonORCID,de Lara Gabriele RodriguesORCID,Poersch Luís H.

Abstract

Integrating marine shrimp and tilapia has been shown to be a viable alternative in a system based on bioflocs, but there is no consensus on the spatial arrangement of farmed animals. The present study aims to (1) compare the performance of shrimp and fish in high density when subjected to polyculture (species in the same tank) and multitrophic (species in different tanks) arrangements, and (2) effects on water quality, especially on organic matter (biofloc). The experiment was carried out for 30 days, and three treatments with bioflocs were evaluated in triplicate: control: shrimp monoculture, polyculture: shrimp and tilapia in the same tank, and multitrophic: shrimp and tilapia in separate tanks. The results show that the best product configuration is the multitrophic system, where the biological control of bioflocs took place, and the best performance of the Pacific white shrimp L. vannamei and Nile tilapia O. niloticus was obtained. Tilapia, as an organic consumer, was effective in controlling bioflocs.

Funder

ASTRAL Project – H2020

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3