QUantitative and Automatic Atmospheric Correction (QUAAC): Application and Validation

Author:

Liu Shumin,Zhang Yunli,Zhao Limin,Chen XingfengORCID,Zhou Ruoxuan,Zheng Fengjie,Li Zhiliang,Li Jiaguo,Yang Hang,Li Huafu,Yang Jian,Gao Hailiang,Gu Xingfa

Abstract

The difficulty of atmospheric correction based on a radiative transfer model lies in the acquisition of synchronized atmospheric parameters, especially the aerosol optical depth (AOD). At the moment, there is no fully automatic and high-efficiency atmospheric correction method to make full use of the advantages of geostationary meteorological satellites in large-scale and efficient atmospheric monitoring. Therefore, a QUantitative and Automatic Atmospheric Correction (QUAAC) method is proposed which can efficiently correct high-spatial-resolution (HSR) satellite images. QUAAC uses the atmospheric aerosol products of geostationary satellites to match the synchronized AOD according to the temporal and spatial information of HSR satellite images. This method solves the problem that the AOD is difficult to obtain or the accuracy is not high enough to meet the demand of atmospheric correction. By using the obtained atmospheric parameters, atmospheric correction is performed to obtain the surface reflectance (SR). The whole process can achieve fully automatic operation without manual intervention. After QUAAC applied to Gaofen-2 (GF-2) HSR satellite and Himawari-8 (H-8) geostationary satellite, the results show that the effect of QUAAC correction is slightly better than that of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) correction, and the QUAAC−corrected surface spectral curves have good coherence to that of the synchronously measured by field experiments.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3