Abstract
In this paper, a generalized form of relativistic dynamics is presented. A realization of the Poincaré algebra is provided in terms of vector fields on the tangent bundle of a simultaneity surface in R 4 . The construction of this realization is explicitly shown to clarify the role of the commutation relations of the Poincaré algebra versus their description in terms of Poisson brackets in the no-interaction theorem. Moreover, a geometrical analysis of the “eleventh generator” formalism introduced by Sudarshan and Mukunda is outlined, this formalism being at the basis of many proposals which evaded the no-interaction theorem.
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献