Abstract
The myelin sheath facilitates action potential conduction along the axons, however, the mechanism by which myelin maintains the spatiotemporal fidelity and limits the hyperexcitability among myelinated neurons requires further investigation. Therefore, in this study, the model of quantum tunneling of potassium ions through the closed channels is used to explore this function of myelin. According to the present calculations, when an unmyelinated neuron fires, there is a probability of 9.15 × 10 − 4 that it will induce an action potential in other unmyelinated neurons, and this probability varies according to the type of channels involved, the channels density in the axonal membrane, and the surface area available for tunneling. The myelin sheath forms a thick barrier that covers the potassium channels and prevents ions from tunneling through them to induce action potential. Hence, it confines the action potentials spatiotemporally and limits the hyperexcitability. On the other hand, lack of myelin, as in unmyelinated neurons or demyelinating diseases, exposes potassium channels to tunneling by potassium ions and induces the action potential. This approach gives different perspectives to look at the interaction between neurons and explains how quantum physics might play a role in the actions occurring in the nervous system.
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献