Abstract
Rainfall-runoff modeling in ungauged basins continues to be a great hydrological research challenge. A novel approach is the Long-Short-Term-Memory neural network (LSTM) from the Deep Learning toolbox, which few works have addressed its use for rainfall-runoff regionalization. This work aims to discuss the application of LSTM as a regional method against traditional neural network (FFNN) and conceptual models in a practical framework with adverse conditions: reduced data availability, shallow soil catchments with semiarid climate, and monthly time step. For this, the watersheds chosen were located on State of Ceará, Northeast Brazil. For streamflow regionalization, both LSTM and FFNN were better than the hydrological model used as benchmark, however, the FFNN were quite superior. The neural network methods also showed the ability to aggregate process understanding from different watersheds as the performance of the neural networks trained with the regionalization data were better with the neural networks trained for single catchments.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献