Rapid Preparation of MWCNTs/Epoxy Resin Nanocomposites by Photoinduced Frontal Polymerization

Author:

Hu Guofeng,Fu Wanli,Ma Yumin,Zhou Jianping,Liang Hongbo,Kang Xinmei,Qi Xiaolin

Abstract

Due to their excellent mechanical and thermal properties and medium resistance, epoxy/carbon nanotubes and nanocomposites have been widely used in many fields. However, the conventional thermosetting process is not only time- and energy-consuming, but also causes the agglomeration of nanofillers, which leads to unsatisfactory properties of the obtained composites. In this study, multi-walled carbon nanotubes (MWCNTs)/epoxy nanocomposites were prepared using UV photoinduced frontal polymerization (PIFP) in a rapid fashion. The addition of MWCNTs modified by a surface carboxylation reaction was found to enhance the impact strength and heat resistance of the epoxy matrix effectively. The experimental results indicate that with 0.4 wt % loading of modified MWCNTs, increases of 462.23% in the impact strength and 57.3 °C in the glass transition temperature Tg were achieved. A high-performance nanocomposite was prepared in only a few minutes using the PIFP approach. Considering its fast, energy-saving, and environmentally friendly production, the PIFP approach displays considerable potential in the field of the fast preparation, repair, and deep curing of nanocomposites and coatings.

Funder

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3