Internal Surface Plasmon Excitation as the Root Cause of Laser-Induced Periodic Plasma Structure and Self-Organized Nanograting Formation in the Volume of Transparent Dielectric

Author:

Gildenburg Vladimir B.,Pavlichenko Ivan A.ORCID

Abstract

A computer simulation of the dynamics of an optical discharge produced in the volume of a transparent dielectric (fused silica) by a focused femtosecond laser pulse was carried out taking into account the possibility of developing small-scale ionization-field instability. The presence of small foreign inclusions in the fused silica was taken into account with the model of a nanodispersed heterogeneous medium by using Maxwell Garnett formulas. The results of the calculations made it possible to reveal the previously unknown physical mechanism that determines the periodicity of the ordered plasma-field structure that is formed in each single breakdown pulse and is the root cause of the ordered volume nanograting formation in dielectric material exposed to a series of repeated pulses. Two main points are decisive in this mechanism: (i) the formation of a thin overcritical plasma layer at the breakdown wave front counter-propagated to the incident laser pulse and (ii) the excitation of the “internal surface plasmon” at this front, resulting in a rapid amplification of the corresponding spatial harmonic of random seed perturbations in the plasma and formation of a contrast structure with a period equal to the wavelength of the surface plasmon (0.7 of the wavelength in dielectric).

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3