Catalytic Preparation of Carbon Nanotubes from Waste Polyethylene Using FeNi Bimetallic Nanocatalyst

Author:

Li Kezhuo,Zhang HaijunORCID,Zheng Yangfan,Yuan Gaoqian,Jia QuanliORCID,Zhang Shaowei

Abstract

In this work, carbon nanotubes (CNTs) were synthesized by catalytic pyrolysis from waste polyethylene in Ar using an in-situ catalyst derived from ferric nitrate and nickel nitrate precursors. The influence factors (such as temperature, catalyst content and Fe/Ni molar ratio) on the formation of CNTs were investigated. The results showed that with the temperature increasing from 773 to 1073 K, the carbon yield gradually increased whereas the aspect (length-diameter) ratio of CNTs initially increased and then decreased. The optimal growth temperature of CNTs was 973 K. With increasing the Fe/Ni molar ratio in an FeNi bimetallic catalyst, the yield of CNTs gradually increased, whereas their aspect ratio first increased and then decreased. The optimal usage of the catalyst precursor (Fe/Ni molar ratio was 5:5) was 0.50 wt% with respect to the mass of polyethylene. In this case, the yield of CNTs reached as high as 20 wt%, and their diameter and length were respectively 20–30 nm, and a few tens of micrometers. The simple low-cost method developed in this work could be used to address the environmental concerns about plastic waste, and synthesize high value-added CNTs for a range of future applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3