Vertical Jump Data from Inertial and Optical Motion Tracking Systems

Author:

Rico-Garcia MateoORCID,Botero-Valencia JuanORCID,Hernández-García RuberORCID

Abstract

Motion capture (MOCAP) is a widely used technique to record human, animal, and object movement for various applications such as animation, biomechanical assessment, and control systems. Different systems have been proposed based on diverse technologies, such as visible light cameras, infrared cameras with passive or active markers, inertial systems, or goniometer-based systems. Each system has pros and cons that make it usable in different scenarios. This paper presents a dataset that combines Optical Motion and Inertial Systems, capturing a well-known sports movement as the vertical jump. As a reference system, the optical motion capture consists of six Flex 3 Optitrack cameras with 100 FPS. On the other hand, we developed an inertial system consisting of seven custom-made devices based on the IMU MPU-9250, which includes a three-axis magnetometer, accelerometer and gyroscope, and an embedded Digital Motion Processor (DMP) attached to a microcontroller mounted on a Teensy 3.2 with an ARM Cortex-M4 processor with wireless operation using Bluetooth. The purpose of taking IMU data with a low-cost and customized system is the deployment of applications that can be performed with similar hardware and can be adjusted to different areas. The developed measurement system is flexible, and the acquisition format and enclosure can be customized. The proposed dataset comprises eight jumps recorded from four healthy humans using both systems. Experimental results on the dataset show two usage examples for measuring joint angles and COM position. The proposed dataset is publicly available online and can be used in comparative algorithms, biomechanical studies, skeleton reconstruction, sensor fusion techniques, or machine learning models.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualisation of Standing Long Jump Patterns Based on PCA and Inertial Sensors;2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3