Phenolic Compounds Regulating the Susceptibility of Adult Pine Species to Bursaphelenchus xylophilus

Author:

Trindade Cândida SofiaORCID,Canas SaraORCID,Inácio Maria L.ORCID,Pereira-Lorenzo SantiagoORCID,Sousa Edmundo,Naves PedroORCID

Abstract

Pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus, is one of the most destructive diseases in trees of the genus Pinus and is responsible for significant environmental and economic losses in North America, Eastern Asia, and Western Europe. However, pine species are not equally affected, with some being tolerant/resistant while others are susceptible to nematode infection for reasons still unclear. The present study aims to investigate differential chemical responses of susceptible and tolerant/resistant pine species shortly after nematode infection by characterizing the phenolic profiles of adult Pinus sylvestris, Pinus pinaster, Pinus pinea, and Pinus halepensis. HPLC and LC-MS were used to identify and quantify the pine´s phenolic compounds: gallic acid, ferulic acid, taxifolin, rutin, resveratrol, (+)-secoisolariciresinol, (−)-epicatechin, protocatechuic acid hexoside, gallic acid hexoside, ferulic acid glucoside, quercetin hexoside, and two unidentified compounds (#A and #B). Prior to infection, we could not differentiate between nematode-tolerant/resistant and susceptible adult pine species based on their constitutive phenolic compounds. In the presence of the PWN, the phenolic profile allowed for a noticeable separation of the PWN-tolerant/resistant P. halepensis from the susceptible P. sylvestris, contrasting with a more homogenous response from P. pinea and P. pinaster. Observations on P. halepensis suggest that taxifolin, resveratrol, and rutin may have an active role in protecting against B. xylophilus, possibly in conjugation with other biochemical and anatomical characters. We emphasize the importance of studying pine tolerant/resistance on adult trees, and not on excised branches, saplings, or seedlings to accurately simulate the nematode–pine host interactions occurring under natural conditions.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3