LiDAR as a Tool for Assessing Change in Vertical Fuel Continuity Following Restoration

Author:

Olszewski Julia H.,Bailey John D.ORCID

Abstract

The need for fuel reduction treatments and the restoration of ecosystem resilience has become widespread in forest management given fuel accumulation across many forested landscapes and a growing risk of high-intensity wildfire. However, there has been little research on methods of assessing the effectiveness of those treatments at landscape scales. Most research has involved small-scale opportunistic case studies focused on incidents where wildland fires encountered recent restoration projects. It is important to assess whether restoration practices are successful at a landscape scale so improvements may be made as treatments are expanded and their individual effectiveness ages. This study used LiDAR acquisitions taken before and after a large-scale forest restoration project in the Malheur National Forest in eastern Oregon to broadly assess changes in fuel structure. The results showed some areas where treatments appeared effective, and other areas where treatments appeared less effective. While some aspects could be modified to improve accuracy, the methods investigated in this study offer forest managers a new option for evaluating the effectiveness of fuel reduction treatments in reducing potential damage due to wildland fire.

Funder

Oregon State University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3