Transfer Learning Approach for Human Activity Recognition Based on Continuous Wavelet Transform

Author:

Pavliuk Olena12ORCID,Mishchuk Myroslav2ORCID,Strauss Christine3ORCID

Affiliation:

1. Department of Distributed Systems and Informatic Devices, Silesian University of Technology, 44-100 Gliwice, Poland

2. Department of Automated Control Systems, Lviv Polytechnic National University, 79000 Lviv, Ukraine

3. Faculty of Business, Economics and Statistics, University of Vienna, Oskar Morgenstern Platz 1, 1090 Vienna, Austria

Abstract

Over the last few years, human activity recognition (HAR) has drawn increasing interest from the scientific community. This attention is mainly attributable to the proliferation of wearable sensors and the expanding role of HAR in such fields as healthcare, sports, and human activity monitoring. Convolutional neural networks (CNN) are becoming a popular approach for addressing HAR problems. However, this method requires extensive training datasets to perform adequately on new data. This paper proposes a novel deep learning model pre-trained on scalograms generated using the continuous wavelet transform (CWT). Nine popular CNN architectures and different CWT configurations were considered to select the best performing combination, resulting in the training and evaluation of more than 300 deep learning models. On the source KU-HAR dataset, the selected model achieved classification accuracy and an F1 score of 97.48% and 97.52%, respectively, which outperformed contemporary state-of-the-art works where this dataset was employed. On the target UCI-HAPT dataset, the proposed model resulted in a maximum accuracy and F1-score increase of 0.21% and 0.33%, respectively, on the whole UCI-HAPT dataset and of 2.82% and 2.89%, respectively, on the UCI-HAPT subset. It was concluded that the usage of the proposed model, particularly with frozen layers, results in improved performance, faster training, and smoother gradient descent on small HAR datasets. However, the use of the pre-trained model on sufficiently large datasets may lead to negative transfer and accuracy degradation.

Funder

Polish–Ukrainian grant “Automated Guided Vehicles integrated with Collaborative Robots—energy consumption models for logistics tasks planning”

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3