Performance Evaluation of NoSQL Document Databases: Couchbase, CouchDB, and MongoDB

Author:

Carvalho Inês1ORCID,Sá Filipe1,Bernardino Jorge1ORCID

Affiliation:

1. Polytechnic of Coimbra, Institute of Engineering of Coimbra—ISEC, Rua Pedro Nunes, Quinta da Nora, 3000-199 Coimbra, Portugal

Abstract

NoSQL document databases emerged as an alternative to relational databases for managing large volumes of data. NoSQL document databases ensure big data storage and good query performance and are essential when the data scheme does not fit into the scheme of relational databases. They store their data in the form of documents and can handle unstructured, semi-structured, and structured data. This work evaluates the top three open-source NoSQL document databases: Couchbase, CouchDB, and MongoDB with Yahoo! Cloud Serving Benchmark (YCSB), which has become a standard for NoSQL database evaluation. The performance and scale-up of document databases are assessed using YCSB workloads with a different number of records and threads, where the runtime is measured for each database. In the experimental evaluation, we concluded that MongoDB is the database with the best runtime, except for the workload composed by scan operations. In addition, we identified CouchDB as the database with the best scale-up when varying the number of threads.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference23 articles.

1. Tannir, K. (2013). RavenDB 2.x, PACKT Publishing.

2. Elmasri, R., and Navathe, S.B. (2016). Fundamentals of Database Systems, Pearson Publishing. [7th ed.].

3. Dave, M. (2022, March 05). SQL and NoSQL Databases. Available online: https://www.researchgate.net/publication/303856633.

4. Reniers, V., van Landuyt, D., Rafique, A., and Joosen, W. (2017, January 22–26). On the state of NoSQL benchmarks. Proceedings of the ICPE 2017—Companion of the 2017 ACM/SPEC International Conference on Performance Engineering, L’Aquila, Italy.

5. Dalström, I., and Ericsson, P. (2022). Performance Comparison between PostgreSQL, MongoDB, ArangoDB and HBase. [Bachelor’s Thesis, University of Skövde]. Information Technology.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3