Dynamic Analysis of Delayed Two-Species Interaction Model with Age Structure: An Application to Larch-Betula Platyphylla Forests in the Daxing’an Mountains, Northeast China

Author:

Huang Xuan1,Ding Yuting1ORCID,Pan Ning1

Affiliation:

1. Department of Mathematics, Northeast Forestry University, Harbin 150040, China

Abstract

Since plant–plant interaction has been the fundamental issue of the ecology community and is essential for the multispecies forest community, it is necessary to analyze the interaction mechanisms and provide suggestions for collaborative management of multispecies forests with the background of double carbon goals in China. To explore the interaction mechanisms in different interaction modes and assist China’s green development, we choose the most promising area, the Daxing’an Mountains, and its dominant species, Larch and Betula platyphylla, as research objects and establish a delayed two-species interaction model with an age structure. First, we calculate the equilibria of our model and analyze the stability of equilibria. Then, we study the existence of the Hopf bifurcation near the equilibria. Furthermore, we determine reasonable parameter values based on official data through mathematical methods, such as cluster analysis and model fitting. Finally, we carry out numerical simulations from three aspects, the evolution of a stand structure without interactions, the population dynamics in different interaction modes, and the influences of the parameters on the equilibria. Combined with simulation results, we provide biological interpretations for simulations of the stand structure evolution process and the interactions between Larch and Betula platyphylla; we also give reasonable values of the growth rates and mortalities for developing forest strategies.

Funder

Fundamental Research Funds for the Central Universities of China

College Students Innovations Special Project funded by Northeast Forestry University of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3