Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques

Author:

Moragues Raul12ORCID,Aparicio Juan13ORCID,Esteve Miriam1ORCID

Affiliation:

1. Center of Operations Research (CIO), Miguel Hernandez University of Elche (UMH), 03202 Elche, Spain

2. Ph.D. Program in Economics (DEcIDE), Miguel Hernandez University of Elche (UMH), 03202 Elche, Spain

3. Joint Research Unit, Valencian Graduate School and Research Network of Artificial Intelligence (valgrAI), 46022 Valencia, Spain

Abstract

In this paper, we propose and compare new methodologies for ranking the importance of variables in productive processes via an adaptation of OneClass Support Vector Machines. In particular, we adapt two methodologies inspired by the machine learning literature: one involving the random shuffling of values of a variable and another one using the objective value of the dual formulation of the model. Additionally, we motivate the use of these type of algorithms in the production context and compare their performance via a computational experiment. We observe that the methodology based on shuffling the values of a variable outperforms the methodology based on the dual formulation. We observe that the shuffling-based methodology correctly ranks the variables in 94% of the scenarios with one relevant input and one irrelevant input. Moreover, it correctly ranks each variable in at least 65% of replications of a scenario with three relevant inputs and one irrelevant input.

Funder

Cátedra Santander en Eficiencia y Productividad

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference63 articles.

1. A theory of production;Cobb;Am. Econ. Rev.,1928

2. Efficient allocation of resources;Koopmans;Econometrica,1951

3. The Coefficient of Resource Utilization;Debreu;Econometrica,1951

4. The Measurement of Productive Efficiency;Farrell;J. R. Stat. Soc. Ser. A Gen.,1957

5. Shephard, R.W. (1953). Cost and Production Functions, Princeton University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3