A New Spike Membership Function for the Recognition and Processing of Spatiotemporal Spike Patterns: Syllable-Based Speech Recognition Application

Author:

Ramírez-Mendoza Abigail María Elena1,Yu Wen2ORCID,Li Xiaoou3

Affiliation:

1. Department of Autonomous Air and Underwater Navigation Systems, French Mexican Laboratory of Informatics and Automatic Control, Mixed International Unit (LAFMIA UMI), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), National Council of Science and Technology (CONACYT), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City CP 07360, Mexico

2. Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City CP 07360, Mexico

3. Computer Department, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City CP 07360, Mexico

Abstract

This paper introduces a new spike activation function (SPKAF) or spike membership function for fuzzy adaptive neurons (FAN), developed for decoding spatiotemporal information with spikes, optimizing digital signal processing. A solution with the adaptive network-based fuzzy inference system (ANFIS) method is proposed and compared with that of the FAN-SPKAF model, obtaining very precise simulation results. Stability analysis of systems models is presented. An application to voice recognition using solfeggio syllables in Spanish is performed experimentally, comparing the methods of FAN-step activation function (STEPAF)-SPKAF, Augmented Spiking Neuron Model, and Augmented FAN-STEPAF-SPKAF, achieving very good results.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference54 articles.

1. A logical calculus of the ideas immanent in nervous activity;McCulloch;Bull. Math. Biophys.,1943

2. A quantitative description of membrane current and its application to conduction and excitation in nerve;Hodgkin;J. Physiol.,1952

3. Gerstner, W., and Kistler, W.M. (2002). Spiking Neuron Models, Cambridge University Press.

4. Simple model of spiking neurons;Izhikevich;IEEE Trans. Neural Netw.,2003

5. Modeling the Spike Response for Adaptive Fuzzy Spiking Neurons with Application to a Fuzzy XOR;Comput. Model. Eng. Sci.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spiking neural networks for physiological and speech signals: a review;Biomedical Engineering Letters;2024-06-25

2. Neuro-Inspired Algorithms for Earthquake Monitoring and Prediction;Advances in Environmental Engineering and Green Technologies;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3