Prescribed Performance Fault-Tolerant Tracking Control of Uncertain Robot Manipulators with Integral Sliding Mode

Author:

Zhang Liyin1,Hou Yinlong1,Liu Hui1,Tang Dafeng1,Li Long1

Affiliation:

1. Xi’an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

Abstract

This paper develops a fault-tolerant tracking control (FTC) for robot manipulators with prescribed performance subject to uncertainties and partial loss in effectiveness of actuators (UPEAs). First, an integral sliding manifold without reaching phase is constructed for guaranteeing the prescribed performance in both the transient and steady states. With this integral sliding manifold, an FTC is proposed for uncertain robot manipulators to obtain advanced tracking performance with prescribed performance constraints under the effects of UPEAs. The stability analysis is guaranteed by the Lyapunov theory and a homogeneous technique. The primary contributions of our design are as follows: (i) the proposed approach removes the reaching phase completely for the sake of the prescribed performance and better chattering-restraining capability; (ii) the nominal control part is also removed in the formulation of the conventional integral sliding mode, and then the proposed approach eliminates the algebraic loop problem; (iii) a simple control structure is accomplished to eliminate the effects of time delay and computational burden. A simulation, along with experiments, is completed for verifying the effectiveness of the proposed approach.

Funder

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3