Mathematical Modeling of Brain Swelling in Electroencephalography and Magnetoencephalography

Author:

Papargiri Athena1,Fragoyiannis George2,Kalantonis Vasileios S.1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece

2. Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

Abstract

In the present paper, the forward problem of EEG and MEG is discussed, where the head is modeled by a spherical two-shell piecewise-homogeneous conductor with a neuronal current source positioned in the exterior shell area representing the brain tissue, while the interior shell portrays a cerebral edema. We consider constant conductivity, which assumes different values in each compartment, where the expansions of the electric potential and the magnetic field are represented via spherical harmonics. Furthermore, we demonstrate the reduction of our analytical results to the single-compartment model while it is shown that the magnetic field in the exterior of the conductor is a function only of the dipole moment and its position. Consequently, it does not depend on the inhomogeneity dictated by the interior shell, a fact that verifies the efficiency of the model.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3