Super Spanning Connectivity of the Folded Divide-and-SwapCube

Author:

You Lantao123ORCID,Jiang Jianfeng1,Han Yuejuan4

Affiliation:

1. School of Information Engineering, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China

2. Suzhou Industrial Park Human Resources Development Co., Ltd., Suzhou 215005, China

3. Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, China

4. School of Computer Science and Technology, Soochow University, Suzhou 215006, China

Abstract

A k*-container of a graph G is a set of k disjoint paths between any pair of nodes whose union covers all nodes of G. The spanning connectivity of G, κ*(G), is the largest k, such that there exists a j*-container between any pair of nodes of G for all 1≤j≤k. If κ*(G)=κ(G), then G is super spanning connected. Spanning connectivity is an important property to measure the fault tolerance of an interconnection network. The divide-and-swap cube DSCn is a newly proposed hypercube variant, which reduces the network cost from O(n2) to O(nlog2n) compared with the hypercube and other hypercube variants. The folded divide-and-swap cube FDSCn is proposed based on DSCn to reduce the diameter of DSCn. Both DSCn and FDSCn possess many better properties than hypercubes. In this paper, we investigate the super spanning connectivity of FDSCn where n=2d and d≥1. We show that κ*(FDSCn)=κ(FDSCn)=d+2, which means there exists an m-DPC(node-disjoint path cover) between any pair of nodes in FDSCn for all 1≤m≤d+2.

Funder

Suzhou Industrial Park Institute of Services Outsourcing

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One-to-one node disjoint paths on divide-and-swap cubes;International Journal of Computer Mathematics: Computer Systems Theory;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3