Affiliation:
1. Faculty of Computation Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
Abstract
Lévy walks represent important modeling tools for a variety of real-life processes. Their natural scaling limits are known to be described by the so-called material fractional derivatives. So far, these scaling limits have been derived for spatially homogeneous walks, where Fourier and Laplace transforms represent natural tools of analysis. Here, we derive the corresponding limiting equations in the case of position-depending times and velocities of walks, where Fourier transforms cannot be effectively applied. In fact, we derive three different limits (specified by the way the process is stopped at an attempt to cross the boundary), leading to three different multi-dimensional versions of Caputo–Dzherbashian derivatives, which correspond to different boundary conditions for the generators of the related Feller semigroups and processes. Some other extensions and generalizations are analyzed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献