Cellular Automaton Modeling of the Transition of Multi-Crystalline Silicon from a Planar Faceted Front to Equiaxed Growth

Author:

Zhang Yingxin,Li Ri,Wang Jia,Wang Longxuan,Yan Wenbo,Liu Caichi,Chen Hongjian

Abstract

A modeling approach combining the lattice Boltzmann (LB) method and the cellular automaton (CA) technique are developed to simulate the faceted front to equiaxed structure transition (FET) of directional solidification of multi-crystalline silicon. The LB method is used for the coupled calculation of velocity, temperature and solute content field, while the CA method is used to compute the nucleation at the silicon-crucible interface and on SiC particles, as well as the mechanism of growth and capturing. For silicon, the interface kinetic coefficient is rather low, which means that the kinetic undercooling can be large. A strong anisotropy in the surface tension and interfacial kinetics are considered in the model. A faceted front in conjunction with a sufficiently high carbon content can lead to equiaxed growth by nucleation on SiC. The temperature gradient in Si melt at the interface is negative, which leads to the occurrence of a faceted interface. The higher the absolute value of thermal gradients, the faster the growth velocity. Due to differences in the degree of undercooling, there will be the unification of facets in front of the solid-liquid interface. Transitions from faceted front to thermal equiaxed dendrites or faceted equiaxed grains are observed with smaller or larger impurity contents, respectively.

Funder

National Natural Science Foundation of China

“Blue Fire Plan” Program of the Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3