Study on the Deformation Mode and Energy Absorption Characteristics of Protective Honeycomb Sandwich Structures Based on the Combined Design of Lotus Root Nodes and Leaf Stem Veins

Author:

Chen Wei12ORCID,Chen Chunyang12,Zhang Yiheng12,Li Pu34,Li Mengzhen12,Li Xiaobin12

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. China Ship Development and Design Center, Wuhan 430064, China

4. National Key Laboratory on Ship Vibration and Noise, Wuhan 430033, China

Abstract

Sandwich structures are often used as protective structures on ships. To further improve the energy-absorbing characteristics of traditional honeycomb sandwich structures, an energy-absorbing mechanism is proposed based on the gradient folding deformation of lotus root nodes and a leafy stem vein homogenizing load mechanism. A honeycomb sandwich structure is then designed that combines lotus root nodes and leafy stem veins. Four types of peak-nest structures, traditional cellular structure (TCS), lotus root honeycomb structure (LRHS), leaf vein honeycomb structure (LVHS), and lotus root vein combined honeycomb structure (LRVHS), were prepared using 3D printing technology. The deformation modes and energy absorption characteristics of the four honeycomb structures under quasistatic action were investigated using a combination of experimental and simulation methods. It was found that the coupling design improved the energy absorption in the structural platform region of the LRHS by 51.4% compared to that of the TCS due to its mechanical mechanism of helical twisting and deformation. The leaf vein design was found to enhance the peak stress of the structure, resulting in a 4.84% increase in the peak stress of the LVHS compared to that of the TCS. The effects of the number, thickness, and position of the leaf vein plates on the honeycomb structure were further explored. The greatest structural SEA effect of 1.28 J/g was observed when the number of leaf vein plates was four. The highest SEA of 1.36 J/g was achieved with a leaf vein plate thickness of 0.6 mm, representing a 7.3% improvement compared to that of the 0.2 mm thickness. These findings may provide valuable insights into the design of lightweight honeycomb sandwich structures with high specific energy absorption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3