Experimental Study on Low-Cycle Fatigue Characteristics of Marine Structural Steel

Author:

Qin Dong1,Xiayang Lu2,Geng Xu3

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430048, China

Abstract

This research focuses on the experimental investigation of the low-cycle fatigue characteristics of marine structural steel. The study aimed to explore the behavior of marine-grade steel under low-cycle fatigue conditions. The experimental parameters include the fatigue life of the material, crack propagation behavior, and a comprehensive analysis of mechanical properties associated with various loading conditions. Based on the experimental results, a low-cycle fatigue crack propagation rate model for marine structural steel plates was established using CTOD as a characterization parameter. The primary objective of this research is likely to enhance the durability and safety of maritime structures, providing valuable technical insights for the field of naval engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference36 articles.

1. Structural safety of ships developed by lessons learned from the 100-year history of break-in-two accidents;Sumi;Mar. Struct.,2019

2. Fatigue crack growth under COD cycling;Dover;Eng. Fract. Mech.,1973

3. A new insight of ship’s longitudinal strength criterion;Huang;China Shipbuild.,1996

4. Research on low-cycle-fatigue crack propagation life for ship plate based on accumulative plastic damage;Dong;J. Ship Mech.,2015

5. Critical analysis of crack growth propagation laws;Paris;J. Basic Eng.,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3