Affiliation:
1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2. College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
Abstract
The dynamic evolution behavior of submerged water jet cavitation clouds was studied by combining experiments and simulation. The formation, development, shedding, and collapsing process of a void cloud was analyzed by high-speed camera technology, and the influence of jet pressure was studied. Cavitation water jet erosion experiments were carried out on AL6061 specimens with standard cylindrical nozzles, and the correlation between cavitation cloud evolution and material erosion was studied by surface analysis. The results showed that the evolution of a cavitation cloud has obvious periodicity, that one period is about 0.8 ms, and its action region can be divided according to the attenuation rate of the jet velocity of the nozzle axis. The attenuation rate of the jet velocity at the nozzle axis in the central jet action zone is less than or equal to 82.5%, in the mixed action zone greater than 82.5% and less than 96%, and in the cavitation action zone greater than or equal to 96%. The erosion damage characteristics in different regions of the mixed action zone are significantly different.
Funder
The National Key Technologies Research and Development Program of China
Chunhui Project of the Ministry of Education of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献