Enhancement of Maritime Sector Decarbonization through the Integration of Fishing Vessels into IMO Energy Efficiency Measures

Author:

Díaz-Secades Luis Alfonso1ORCID

Affiliation:

1. Department of Marine Science and Technology, University of Oviedo, 33203 Gijon, Spain

Abstract

The escalating impact of anthropogenic activities on global climate patterns necessitates urgent measures to reduce emissions, with the maritime industry playing a pivotal role. This article aims to examine the adoption of International Maritime Organization energy efficiency measures for the often-overlooked fishing vessels and their contribution to the overall maritime decarbonization efforts. The article analyzes the attained technical efficiency indices of a case study large-scale fishing vessel and compares them with those of two cargo ships where IMO measures already apply. To support the proposal, a comprehensive analysis of the energy efficiency indices of eight large purse seine fishing vessels is also presented. The results show that large-scale fishing vessels of 400 GT and above could be subject to the IMO energy efficiency measures. The operational challenges, unique to the fishing sector, suggest that sector-specific considerations may be required to integrate the fishing fleet into the already existing IMO energy efficiency guidelines. Looking ahead, this article explores the benefits of aligning Regulation (EU) 2023/957 and IMO guidelines, as well as applying the IMO Carbon Intensity Indicator (CII) in assessing the operational environmental impact of fishing operations, emphasizing the importance of including these vessels in the current regulatory frameworks to promote decarbonization.

Publisher

MDPI AG

Reference93 articles.

1. Core Writing Team, Lee, H., and Romero, J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. International Energy Agency (IEA) (2019). Global Energy & CO2 Status Report, International Energy Agency (IEA).

3. International Maritime Organization (IMO) (2021). Fourth IMO Greenhouse Gas Study, International Maritime Organization (IMO).

4. ITF (2020). Navigating towards Cleaner Maritime Shipping: Lessons from the Nordic Region, ITF. Case-Specific Policy Analysis Reports.

5. OECD/ITF (2018). Reducing Shipping Greenhouse Gas Emissions: Lessons from Port-Based Incentives, OECD/ITF.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3