The Sediments in the Beibu Gulf Reveal Dramatic Paleoenvironmental Changes and Climate Events over the Past ~20,000 Years

Author:

Li Yuchun1,Fan Tianlai1,Wang Aihua23,Zeng Jun45,Lv Yubiao45,Zhang Mingwang1,Liu Dajun1

Affiliation:

1. Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China

2. Nanjing Hongchuang Exploration Technology Service, Nanjing 210023, China

3. Nanjing Center, China Geological Survey, Nanjing 210016, China

4. Guangxi Academy of Sciences, Nanning 530007, China

5. Institute of Beibu Gulf Marine Industry, Fangchenggang 538000, China

Abstract

The geochemical characteristics of a 2.1 m BBW25 core, collected from the Beibu Gulf, have been investigated in terms of the major and trace elements, organic matter, and CaCO3 and AMS 14C dating by XRF, ICP-OES, ICP-MS, and more. We have found through previous research that there are issues with unclear delineation of sedimentary evolution environments and inexact responses between chemical weathering intensity and major paleoclimate events in the Beibu Gulf. The AMS 14C dating results indicate that the sedimentary age at the bottom was 19.24 ky b.p. CaCO3, δ13C, C/N, and Sr/Ba indexes show a sedimentary environment change from terrestrial to marine environments and a “jump” of ~4000 years in continent–ocean changes. The evolution of the sedimentary environment of Beibu Gulf was divided into three environments and five sub-environments. The changes in chemical weathering intensity indicators recorded by the CIX and the Fe/Al ratio respond well to the East Asian monsoon cycle, the meltwater events, and the alternation of cold and warm events. This study explains the chemical weathering intensity and sedimentary environment in the BBW25 core by geochemical characteristics and further reveals the paleoenvironmental characteristics and possible driving mechanisms over the past ~20,000 years.

Funder

Science Fund Project of Fangchenggang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3