Effect of Wavelength on Turbine Performances and Vortical Wake Flows for Various Submersion Depths

Author:

Liu Bohan1ORCID,Park Sunho12ORCID

Affiliation:

1. Department of Convergence Studies on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

2. Department of Ocean Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

Abstract

When tidal turbines are deployed in water areas with significant waves, assessing the surface wave effects becomes imperative. Understanding the dynamic impact of wave–current conditions on the fluid dynamic performance of tidal turbines is crucial. This paper aims to establish a fundamental understanding of the influence of surface waves on tidal turbines. OpenFOAM, an open-source computational fluid dynamics (CFD) library platform, is utilized to predict the performance of current turbine under waves and currents. This research investigates the effects of two critical wave parameters, wave height and wavelength, on the fluid dynamics and wake structures of current turbine. Additionally, this study explores the influence of various submersion depths on turbine performance. The findings indicate that, under various wave conditions, the turbine’s average power coefficient remains constant, but significant fluctuations are shown. Increasing submersion depth can mitigate the impact of waves. However, in regions characterized by longer wavelengths, altering the submersion depth has limited effects on turbine performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3