Affiliation:
1. Faculty of Marine Science and Technology, Iskenderun Technical University, Iskenderun 31200, Turkey
2. Department of Industrial Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Iskenderun 31200, Turkey
Abstract
In recent years, investments in renewable energy sources have been increasing in order to reduce fossil fuel consumption and mitigate the effects of global warming on the marine ecosystem. Recent studies have shown that marine current energy, which is one of the renewable energy sources, can provide very high energy gains. This study focuses on the Mediterranean region, which is one of the areas where the impacts of climate change are most clearly felt. The annual and seasonal analysis of the current velocity in the study area between 2016 and 2018 was carried out using remote sensing technology, and potential energy production was calculated using an underwater turbine system we selected. As a result of the study, it was determined that the maximum current velocities were 2.2 m/s in 2016 and 2017 and 2.7 m/s in 2018. In addition, it was observed that the current speed was approximately 2.7 m/s in the spring months and 2.0 m/s in the summer months. In the fall and winter months, it was 2.1 m/s and 2.2 m/s, respectively. Research has shown that the study area, especially in the eastern coastal areas, has the capacity to generate approximately 10 GWh of energy per year with the use of underwater turbine systems.