Dynamic Analysis of a Barge-Type Floating Wind Turbine Subjected to Failure of the Mooring System

Author:

Chen Mingsheng12ORCID,Yang Lenan2,Sun Xinghan3,Pan Jin12,Zhang Kai4,Lin Lin5,Yun Qihao2,Chen Ziwen6

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. Powerchina (Xi’an) Port Navigation Shipbuliding Technology Co., Ltd., Xi’an 710089, China

4. China Ship Scientific Research Center, Wuxi 214000, China

5. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China

6. China Three Gorges Corporation, Beijing 100038, China

Abstract

Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpool-damping effect. Based on the BEM potential flow method, this study uses ANSYS-AQWA software to create a floating-barge moonpool platform model equipped with an OC5 NREL 5 MW wind turbine, to study the effect of the damping lid method on the resonance of the moonpool gap water, the wind–wave coupling effect, and the dynamic response of the FOWT and mooring system after single-line and double-line failure. The results show that the damping lid method, based on the potential flow theory, can effectively correct the effect caused by the lack of viscosity; the effect of a single breakage of upwind mooring lines on the motion is mainly in the sway and yaw modes, and after mooring line 8 breaks, the maximum tension of the adjacent mooring line increases by 2.91 times compared to the intact condition, which is 58.9% of the minimum breaking strength; and the breakage of two mooring lines located at one corner leads to a surge drift of up to 436.7 m and a cascading failure phenomenon.

Funder

Research Project of China Three Gorges Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3