Contactless Real-Time Heartbeat Detection via 24 GHz Continuous-Wave Doppler Radar Using Artificial Neural Networks

Author:

Malešević Nebojša,Petrović VladimirORCID,Belić MinjaORCID,Antfolk Christian,Mihajlović Veljko,Janković Milica

Abstract

The measurement of human vital signs is a highly important task in a variety of environments and applications. Most notably, the electrocardiogram (ECG) is a versatile signal that could indicate various physical and psychological conditions, from signs of life to complex mental states. The measurement of the ECG relies on electrodes attached to the skin to acquire the electrical activity of the heart, which imposes certain limitations. Recently, due to the advancement of wireless technology, it has become possible to pick up heart activity in a contactless manner. Among the possible ways to wirelessly obtain information related to heart activity, methods based on mm-wave radars proved to be the most accurate in detecting the small mechanical oscillations of the human chest resulting from heartbeats. In this paper, we presented a method based on a continuous-wave Doppler radar coupled with an artificial neural network (ANN) to detect heartbeats as individual events. To keep the method computationally simple, the ANN took the raw radar signal as input, while the output was minimally processed, ensuring low latency operation (<1 s). The performance of the proposed method was evaluated with respect to an ECG reference (“ground truth”) in an experiment involving 21 healthy volunteers, who were sitting on a cushioned seat and were refrained from making excessive body movements. The results indicated that the presented approach is viable for the fast detection of individual heartbeats without heavy signal preprocessing.

Funder

Stiftelsen Promobilia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Doppler Radar Assessment of Environmental Noise Effect on Cardiovascular and Respiratory Activity;2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2024-06-03

2. ECG waveform generation from radar signals: A deep learning perspective;Computers in Biology and Medicine;2024-06

3. Detection and classification of human respiration under building debris model using VHF/UHF waves;Neural Computing and Applications;2024-05-10

4. Predicting Heartbeats in Real-Time: A Continuous Monitoring Approach with Face Recognition Algorithm;2024 11th International Conference on Signal Processing and Integrated Networks (SPIN);2024-03-21

5. High-Precision Railway Fastener Detecting via Deep Learning Radar for Intelligent Train Positioning;IEEE Sensors Journal;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3