DMSO and Its Role in Differentiation Impact Efficacy of Human Adenovirus (HAdV) Infection in HepaRG Cells

Author:

Hofmann Katharina12,Hofmann Samuel345,Weigl Franziska1,Mai Julia6ORCID,Schreiner Sabrina1356

Affiliation:

1. Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany

2. Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany

3. Institute of Virology, Hannover Medical School, 30625 Hannover, Germany

4. Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany

5. Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany

6. Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany

Abstract

Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William’s E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.

Funder

Deutsche Forschungsgemeinschaft

Germany’s Excellence Strategy—EXC 2155

Research Unit FOR5200 DEEP-DV

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3