Air Diffusion and Velocity Characteristics of Self-Aerated Developing Region in Flat Chute Flows

Author:

Song Liaochao,Deng Jun,Wei Wangru

Abstract

Self-aerated flows in flat chutes are encountered downstream of the bottom outlet, in spillways with a small slope and in storm waterways. In the present study, the development of self-aeration in flat chute flow is described and new experiments are performed in a long flat chute with a pressure outlet for different flow discharge rates. The distribution of air concentration, time mean velocity and velocity fluctuation in flow direction in the self-aerated developing region—where air bubbles do not diffuse next to the channel bottom—were measured and analyzed. The region of self-aeration from free surface was about 27.16% to 51.85% of the water depth in the present study. The analysis results revealed that the maximum distance of air bubble diffusion to the channel bottom increased with the development of self-aeration along the flow direction. This indicates that for flat chute flow, the process of air bubble diffusion from free surface to channel bottom was relatively long. Cross-section velocities increased along the flow direction in the self-aerated developing region, and this trend was much more remarkable in the area near water free surface. The velocity fluctuations in flow direction in cross-sections flattened and increased with the development of self-aerated flow. Higher velocity fluctuations in flow direction corresponded to the presence of much stronger turbulence, which enhanced air bubble diffusion from the water free surface to channel bottom along the flow direction.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3