Improving Energy Efficiency in Buildings Using an Interactive Mathematical Programming Approach

Author:

Diakaki ChristinaORCID,Grigoroudis EvangelosORCID

Abstract

Improving energy efficiency in buildings is a major priority and challenge worldwide. The employed measures vary in nature, and the decision analyst, who is typically the architect, the engineer, or the building expert that has undertaken the task to suggest energy efficient solutions, faces a complex decision problem comprising numerous decision variables and multiple, usually competitive objectives. The solution of such multi-objective problems typically involves some sort of objectives aggregation, which reflects the preferences of the involved final decision maker that is the building’s user, occupant, and/or owner. The preferences elicitation, however, is a difficult task, and this paper aims to provide an interactive framework that will allow their consideration in a relatively easy manner. More specifically, a mathematical programming approach is proposed herein, which allows the elicitation and incorporation of the decision maker’s preferences in the decision model via the assessment of his/her utility function with the assistance of the multicriteria decision aid method UTASTAR. To study the feasibility and efficiency of the proposed approach, the case of a simple building is examined as an application example. The study results suggest that the proposed approach is capable of helping the decision analyst to suggest energy measures that satisfy, as much as possible, the decision maker’s preferences, without having to precisely prescribe them beforehand.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3