CGAN-Based Forest Scene 3D Reconstruction from a Single Image

Author:

Li Yuan12ORCID,Kan Jiangming12

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of State Forestry Administration on Forestry Equipment and Automation, Beijing 100083, China

Abstract

Forest scene 3D reconstruction serves as the fundamental basis for crucial applications such as forest resource inventory, forestry 3D visualization, and the perceptual capabilities of intelligent forestry robots in operational environments. However, traditional 3D reconstruction methods like LiDAR present challenges primarily because of their lack of portability. Additionally, they encounter complexities related to feature point extraction and matching within multi-view stereo vision sensors. In this research, we propose a new method that not only reconstructs the forest environment but also performs a more detailed tree reconstruction in the scene using conditional generative adversarial networks (CGANs) based on a single RGB image. Firstly, we introduced a depth estimation network based on a CGAN. This network aims to reconstruct forest scenes from images and has demonstrated remarkable performance in accurately reconstructing intricate outdoor environments. Subsequently, we designed a new tree silhouette depth map to represent the tree’s shape as derived from the tree prediction network. This network aims to accomplish a detailed 3D reconstruction of individual trees masked by instance segmentation. Our approach underwent validation using the Cityscapes and Make3D outdoor datasets and exhibited exceptional performance compared with state-of-the-art methods, such as GCNDepth. It achieved a relative error as low as 8% (with an absolute error of 1.76 cm) in estimating diameter at breast height (DBH). Remarkably, our method outperforms existing approaches for single-image reconstruction. It stands as a cost-effective and user-friendly alternative to conventional forest survey methods like LiDAR and SFM techniques. The significance of our method lies in its contribution to technical support, enabling the efficient and detailed utilization of 3D forest scene reconstruction for various applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3