Diagnostic Process of an Ancient Colonnade Using 3D High-Resolution Models with Non-Invasive Multi Techniques

Author:

Casula Giuseppe1ORCID,Fais Silvana234ORCID,Cuccuru Francesco2,Bianchi Maria Giovanna1ORCID,Ligas Paola2ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia (INGV)—Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy

2. Department of Environmental Civil Engineering and Architecture (DICAAR), University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy

3. Consorzio Interuniversitario Nazionale per l’Ingegneria delle Georisorse, CINIGEO, Palazzo Baleani, Corso Vittorio Emanuele II 244, 00186 Roma, Italy

4. National Research Council of Italy (CNR)—Institute of Environmental Geology and Geoengineering (IGAG), Via Marengo 2, 09123 Cagliari, Italy

Abstract

Here, an avant-garde study of three ancient Doric columns of the precious, ancient Romanesque church of Saints Lorenzo and Pancrazio in the historical town center of Cagliari (Italy) is presented based on the integrated application of different non-destructive testing methods. The limitations of each methodology are overcome by the synergistic application of these methods, affording an accurate, complete 3D image of the studied elements. Our procedure begins with a macroscopic in situ analysis to provide a preliminary diagnosis of the conditions of the building materials. The next step is laboratory tests, in which the porosity and other textural characteristics of the carbonate building materials are studied by optical and scanning electron microscopy. After this, a survey with a terrestrial laser scanner and close-range photogrammetry is planned and executed to produce accurate high-resolution 3D digital models of the entire church and the ancient columns inside. This was the main objective of this study. The high-resolution 3D models allowed us to identify architectural complications occurring in historical buildings. The 3D reconstruction with the above metric techniques was indispensable for planning and carrying out the 3D ultrasonic tomography, which played an important role in detecting defects, voids, and flaws within the body of the studied columns by analyzing the propagation of the ultrasonic waves. The high-resolution 3D multiparametric models allowed us to obtain an extremely accurate picture of the conservation state of the studied columns in order to locate and characterize both shallow and internal defects in the building materials. This integrated procedure can aid in the control of the spatial and temporal variations in the materials’ properties and provides information on the process of deterioration in order to allow adequate restoration solutions to be developed and the structural health of the artefact to be monitored.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3