Analysis Method of Full-Scale Pore Distribution Based on MICP, CT Scanning, NMR, and Cast Thin Section Imaging—A Case Study of Paleogene Sandstone in Xihu Sag, East China Sea Basin

Author:

Chen Jinlong12,Huang Zhilong12,Yao Genshun3,Zhang Weiwei4,Pan Yongshuai12,Qu Tong12

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

2. College of Geosciences, China University of Petroleum, Beijing 102249, China

3. Hangzhou Institute of Geology, China National Petroleum Corporation, Hangzhou 310023, China

4. The Fourth Geological Company of Hubei Geological Bureau, Xianning 437014, China

Abstract

Using different experimental methods, the pore radius ranges vary greatly, and most scholars use a single experiment to study pore structure, which is rarely consistent with reality. Moreover, the numerical models used in different experiments vary and cannot be directly compared. This article uniformly revised all experimental data into a cylinder model. Quantitative analysis of the full-scale pore distribution is established by mercury withdrawal–CT data, and semi-quantitative distribution is obtained by mercury–NMR–cast thin section imaging. In this paper, we introduce the tortuosity index (τ) to convert the CT ball-and-stick model into a cylinder model, and the pore shape factor (η) of the cast is used to convert the plane model into the cylinder model; the mercury withdrawal data is applied to void the influence of narrow throat cavities, and the NMR pore radius distribution is obtained using the mercury-T2 calibration method. Studies have shown that the thickness of bound water is 0.35~0.4 μm, so the pores with different radius ranges were controlled by different mechanisms in the NMR tests, with pores < 0.35~0.4 μm completely controlled by surface relaxation, including strong bound water and weak bound water; pores in the 0.4~4 μm reange were controlled by surface relaxation; and pores > 10 μm were completely controlled by free relaxation. The surface relaxivity rate of fine sandstone was 18~20 μm/s. The tortuosity index τ was generally 1~7; the larger the value, the more irregular the pores. The pore shape factor η was generally 0.2~0.5; the smaller the value, the more irregular the pores. Mercury withdrawal–CT scan data can quantitatively determine the pore radius distribution curve. The coefficient of the logarithm is positive considering porosity, and the constant is negative considering porosity. Permeability controls the maximum pore radius, with a max pore radius > 100 μm and a permeability > 1 mD. Mercury withdrawal–NMR–cast thin section imaging data can semi-quantitatively establish a pore radius distribution histogram. The histogram represents quasi-normal, stepped, and unimodal data. When 60 μm is the inflection point, if a large proportion of pores measure > 60 μm, good reservoir quality is indicated. If a large proportion of pores measures < 60 μm, the permeability is generally <0.5 mD.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3