Comprehensive Analysis of PERSIANN Products in Studying the Precipitation Variations over Luzon

Author:

Hsu Jie,Huang Wan-RuORCID,Liu Pin-Yi

Abstract

This study evaluated the capability of satellite precipitation estimates from five products derived from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (including PERSIANN, PERSIANN-CCS, PERSIANN-CDR, PERSIANN-CCS-CDR, and PDIR-Now) to represent precipitation characteristics over Luzon. The analyses focused on monthly and daily timescales from 2003–2015 and adopted surface observations from the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) platform as the evaluation base. Among the five satellite precipitation products (SPPs), PERSIANN-CDR was observed to possess a better ability to qualitatively and quantitatively estimate spatiotemporal variations of precipitation over Luzon for the majority of the examined features with the exception of the extreme precipitation events, for which PERSIANN-CCS-CDR is superior to the other SPPs. These results highlight the usefulness of the addition of the cloud patch approach to PERSIANN-CDR to produce PERSIANN-CCS-CDR to depict the characteristics of extreme precipitation events over Luzon. A similar advantage of adopting the cloud patch approach in producing extreme precipitation estimates was also revealed from the comparison of PERSIANN, PERSIANN-CCS, and PDIR-Now. Our analyses also highlighted that all PERSIANN-series exhibit improved skills in regard to detecting precipitation characteristics over west Luzon compared to that over east Luzon. To overcome this weakness, we suggest that an adjustment in the cloud patch approach (e.g., using different cloud temperature thresholds or different brightness temperature and precipitation rate relationships) over east Luzon may be helpful.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Performance of Multiple Satellite Precipitation Estimates over a Typical Arid Mountainous Area of China: Spatiotemporal Patterns and Extremes;J. Hydrometeorol.,2020

2. Multiple satellite-observed long-term changes in the summer diurnal precipitation over Luzon and its adjacent seas during 2000–2019;Int. J. Appl. Earth Obs. Geoinf.,2022

3. Multiple timescale assessment of wet season precipitation estimation over Taiwan using the PERSIANN family products;Int. J. Appl. Earth Obs. Geoinf.,2021

4. Performance assessment of GPM-based near-real-time satellite products in depicting diurnal precipitation variation over Taiwan;J. Hydrol. Reg. Stud.,2021

5. Assessment of IMERG precipitation over Taiwan at multiple timescales;Atmos. Res.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3