UAV-LiDAR and RGB Imagery Reveal Large Intraspecific Variation in Tree-Level Morphometric Traits across Different Pine Species Evaluated in Common Gardens

Author:

Lombardi EricaORCID,Rodríguez-Puerta FranciscoORCID,Santini Filippo,Chambel Maria Regina,Climent JoséORCID,Resco de Dios VíctorORCID,Voltas Jordi

Abstract

Remote sensing is increasingly used in forest inventories. However, its application to assess genetic variation in forest trees is still rare, particularly in conifers. Here we evaluate the potential of LiDAR and RGB imagery obtained through unmanned aerial vehicles (UAVs) as high-throughput phenotyping tools for the characterization of tree growth and crown structure in two representative Mediterranean pine species. To this end, we investigated the suitability of these tools to evaluate intraspecific differentiation in a wide array of morphometric traits for Pinus nigra (European black pine) and Pinus halepensis (Aleppo pine). Morphometric traits related to crown architecture and volume, primary growth, and biomass were retrieved at the tree level in two genetic trials located in Central Spain and compared with ground-truth data. Both UAV-based methods were then tested for their accuracy to detect genotypic differentiation among black pine and Aleppo pine populations and their subspecies (black pine) or ecotypes (Aleppo pine). The possible relation between intraspecific variation of morphometric traits and life-history strategies of populations was also tested by correlating traits to climate factors at origin of populations. Finally, we investigated which traits distinguished better among black pine subspecies or Aleppo pine ecotypes. Overall, the results demonstrate the usefulness of UAV-based LiDAR and RGB records to disclose tree architectural intraspecific differences in pine species potentially related to adaptive divergence among populations. In particular, three LiDAR-derived traits related to crown volume, crown architecture, and main trunk—or, alternatively, the latter (RGB-derived) two traits—discriminated the most among black pine subspecies. In turn, Aleppo pine ecotypes were partly distinguishable by using two LiDAR-derived traits related to crown architecture and crown volume, or three RGB-derived traits related to tree biomass and main trunk. Remote-sensing-derived-traits related to main trunk, tree biomass, crown architecture, and crown volume were associated with environmental characteristics at the origin of populations of black pine and Aleppo pine, thus hinting at divergent environmental stress-induced local adaptation to drought, wildfire, and snowfall in both species.

Funder

Spanish Government

AGAUR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3