Effect of Vacancy Behavior on Precipitate Formation in a Reduced-Activation V−Cr−Mn Medium-Entropy Alloy

Author:

Wang Tianjiao,Zhu TeORCID,Wang Dandan,Zhang Peng,Song Yamin,Ye Fengjiao,Wang Qianqian,Jin ShuoxueORCID,Yu RunshengORCID,Liu Fuyan,Kuang PengORCID,Wang Baoyi,Li Liben,Cao XingzhongORCID

Abstract

In this work, we studied the evolution of vacancy-like defects and the formation of brittle precipitates in a reduced-activation V−Cr−Mn medium-entropy alloy. The evolution of local electronic circumstances around Cr and Mn enrichments, the vacancy defects, and the CrMn3 precipitates were characterized by using scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, and positron annihilation spectroscopy. The microstructure measurements showed that the Mn and Cr enrichments in the as-cast sample significantly evolved with temperature, i.e., from 400 °C, the Cr/Mn-segregated regions gradually dissolved into the matrix and then disappeared, and from 900 °C to 1000 °C, they existed as CrMn3 precipitates. The crystallite size of the phase corresponding to CrMn3 precipitates was about 29.4 nm at 900 °C and 43.7 nm at 1000 °C. The positron annihilation lifetime results demonstrated that the vacancies mediated the migration of Cr and Mn, and Cr and Mn segregation finally led to the formation of CrMn3 precipitates. The coincidence Doppler broadening results showed that the characteristic peak moved to the low-momentum direction, due to an increase in the size of the vacancy defects at the interface and the formation of CrMn3 precipitates.

Funder

National Key R&D Project of China

Natural Science Foundation of Henan

National Natural Science Foundation of China

China Post-Doctoral Science Foundation

National Innovation Center of Radiation Application

Hong Kong Scholars Scheme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3