Abstract
High-speed trains have a large amount of ancillary equipment, which is suspended from the underside of the train by means of a suspension structure. Due to the large mass of the ancillary equipment, the suspension structure is subjected to various loads during train operation and there is a risk of fatigue failure. In this paper, the stress distribution at the suspension point and the lo-cation of the maximum stress point under load are investigated in detail based on actual test loads at the suspension point and finite element simulation analysis. In order to further investigate the fracture failure of the suspension points, experimental studies were carried out. Firstly, static strength tests were carried out to obtain the load–displacement curves of the structural members and to determine the fracture strength of the structure based on the displacement sensors, and secondly, fatigue tests at different stress levels were carried out to obtain the load–life curves of the structural members and to investigate the probabilistic load–life curves at different reliability levels. The test results show that the structural component has a high fracture strength of 65kN, while the conditional fatigue strength is relatively low, corresponding to a load level of 12.5kN at a median life of 106 cycles. The above research work provides the necessary basis for the design, optimization and reliability assessment of the suspension structures of high-speed trains.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project of the Ministry of Science and Technology of China
Basic Research Projects for Universities of Liaoning Provincial Education Department
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献