Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering

Author:

Echeverria Molina Maria I.ORCID,Chen Chi-An,Martinez Jeniree,Tran Perry,Komvopoulos KyriakosORCID

Abstract

After decades of research, fully functional skin regeneration is still a challenge. Skin is a multilayered complex organ exhibiting a cascading healing process affected by various mechanisms. Specifically, nutrients, oxygen, and biochemical signals can lead to specific cell behavior, ultimately conducive to the formation of high-quality tissue. This biomolecular exchange can be tuned through scaffold engineering, one of the leading fields in skin substitutes and equivalents. The principal objective of this investigation was the design, fabrication, and evaluation of a new class of three-dimensional fibrous scaffolds consisting of poly(ε-caprolactone) (PCL)/calcium alginate (CA), with the goal to induce keratinocyte differentiation through the action of calcium leaching. Scaffolds fabricated by electrospinning using a PCL/sodium alginate solution were treated by immersion in a calcium chloride solution to replace alginate-linked sodium ions by calcium ions. This treatment not only provided ion replacement, but also induced fiber crosslinking. The scaffold morphology was examined by scanning electron microscopy and systematically assessed by measurements of the pore size and the diameter, alignment, and crosslinking of the fibers. The hydrophilicity of the scaffolds was quantified by contact angle measurements and was correlated to the augmentation of cell attachment in the presence of CA. The in vitro performance of the scaffolds was investigated by seeding and staining fibroblasts and keratinocytes and using differentiation markers to detect the evolution of basal, spinous, and granular keratinocytes. The results of this study illuminate the potential of the PCL/CA scaffolds for tissue engineering and suggest that calcium leaching out from the scaffolds might have contributed to the development of a desirable biological environment for the attachment, proliferation, and differentiation of the main skin cells (i.e., fibroblasts and keratinocytes).

Funder

Coleman Fung Institute for Engineering Leadership, University of California, Berkeley

Publisher

MDPI AG

Subject

General Materials Science

Reference51 articles.

1. Basic Physiology of the Skin;Venus;Surgery,2010

2. Epidermal Homeostasis: The Role of the Growth Hormone and Insulin-Like Growth Factor Systems;Edmondson;Endocr. Rev.,2003

3. Role of Micronutrients in Skin Health and Function;Park;Biomol. Ther.,2015

4. Calcium Regulation of Keratinocyte Differentiation;Bikle;Expert Rev. Endocrinol. Metab.,2012

5. The Skin: An Indispensable Barrier;Proksch;Exp. Dermatol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3