Deformation Behavior under Tension with Pulse Current of Ultrafine-Grain and Coarse-Grain CP Titanium

Author:

Stolyarov VladimirORCID,Korolkov OlegORCID,Pesin AlexanderORCID,Raab George

Abstract

The problem of the real existence of the electroplastic effect during deformation of metallic materials of different nature is still relevant. At the same time, the influence of structure refinement is not considered enough. In this work, the deformation behavior of ultrafine-grained (UFG) titanium Grade 4 is compared with that of coarse-grained (CG) titanium under tension with pulse current of the low duty cycle. The deformation curves of both structure states are presented for different regimes of pulsed current and thermal heating from an external source. Structure studies by optical and scanning electron microscopy, as well as microhardness measurements have been carried out. It is shown that Grade 4 titanium under tension accompanied by pulsed current exhibits electroplastic effect (EPE) in the form of a flow stress reduction. EPE in UFG state is much stronger than in CG state. An increase in the density and duration of the current pulse leads to a multiple decrease in the flow stresses in CG and UFG titanium. The contribution in the flow stress reduction from heating by an external source was less than that from tension with pulse current at the same temperatures. The impact of pulsed current during tension does not influence microhardness and grain size.

Funder

Government of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Reference18 articles.

1. Mechanisms of electroplasticity;Bataronov;Soros Educ. J.,1999

2. An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titanium;Okazaki;Mater. Sci. Eng.,1980

3. Elucidating the origin of electroplasticity in metallic materials;Kim;Appl. Mater. Today,2020

4. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current;Roh;Int. J. Plast.,2014

5. Electromechanical effect in metals;Troitsky;JETP Lett.,1969

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3