The New Reliable pH Sensor Based on Hydrous Iridium Dioxide and Its Composites

Author:

Lenar Nikola,Piech RobertORCID,Paczosa-Bator BeataORCID

Abstract

The new reliable sensor for pH determination was designed with the use of hydrous iridium dioxide and its composites. Three different hIrO2-based materials were prepared and applied as solid-contact layers in pH-selective electrodes with polymeric membrane. The material choice included standalone hydrous iridium oxide; composite material of hydrous iridium oxide, carbon nanotubes, and triple composite material composed of hydrous iridium oxide; carbon nanotubes; and poly(3-octylthiophene-2,5-diyl). The paper depicts that the addition of functional material to standalone metal oxide is beneficial for the performance of solid-state ion-selective electrodes and presents the universal approach to designing this type of sensors. Each component contributed differently to the sensors’ performance—the addition of carbon nanotubes increased the electrical capacitance of sensor (up to 400 µF) while the addition of conducting polymer allowed it to increase the contact angle of material changing its wetting properties and enhancing the stability of potentiometric response. Hydrous iridium oxide contacted electrodes exhibit linear response in wide linear range of pH (2–11) and stable potentiometric response (the lowest potential drift of 0.036 mV/h is attributed to the electrode with triple composite material).

Funder

University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. On the ionisation of proteins;Trav. Lab. Carlsb.,1924

2. Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002);Spitzer;Pure Appl. Chem.,2007

3. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends;Shao;Chem. Soc. Rev.,2020

4. Potentiometric Sensing;Zdrachek;Anal. Chem.,2019

5. Polymer membrane ion-selective electrodes-what are the limits?;Bakker;Electroanalysis,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3