Piezoelectric Motor Using In-Plane Orthogonal Resonance Modes of an Octagonal Plate

Author:

Spanner Karl,Koc Burhanettin

Abstract

Piezoelectric motors use the inverse piezoelectric effect, where microscopically small periodical displacements are transferred to continuous or stepping rotary or linear movements through frictional coupling between a displacement generator (stator) and a moving (slider) element. Although many piezoelectric motor designs have various drive and operating principles, microscopic displacements at the interface of a stator and a slider can have two components: tangential and normal. The displacement in the tangential direction has a corresponding force working against the friction force. The function of the displacement in the normal direction is to increase or decrease friction force between a stator and a slider. Simply, the generated force alters the friction force due to a displacement in the normal direction, and the force creates movement due to a displacement in the tangential direction. In this paper, we first describe how the two types of microscopic tangential and normal displacements at the interface are combined in the structures of different piezoelectric motors. We then present a new resonance-drive type piezoelectric motor, where an octagonal plate, with two eyelets in the middle of the two main surfaces, is used as the stator. Metallization electrodes divide top and bottom surfaces into two equal regions orthogonally, and the two driving signals are applied between the surfaces of the top and the bottom electrodes. By controlling the magnitude, frequency and phase shift of the driving signals, microscopic tangential and normal displacements in almost any form can be generated. Independently controlled microscopic tangential and normal displacements at the interface of the stator and the slider make the motor have lower speed–control input (driving voltage) nonlinearity. A test linear motor was built by using an octagonal piezoelectric plate. It has a length of 25.0 mm (the distance between any of two parallel side surfaces) and a thickness of 3.0 mm, which can produce an output force of 20 N.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference63 articles.

1. Micromechatronics;Uchino,2003

2. Vibro-Motors for Precision Micro-Robots,1988

3. Ultrasonic Motors—Theory and Applications;Ueha,1993

4. An Introduction to Ultrasonic Motors;Sashida,1993

5. Ultrasonic Motors: Technologies and Applications;Zhao,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3