Physiological Differences and Transcriptome Analysis Reveal That High Enzyme Activity Significantly Enhances Drought Tolerance in Chinese Fir (Cunninghamia lanceolata)

Author:

Li Shubin12,Yan Xinyang3,Huang Xiaoyan12,Addo-Danso Shalom Daniel4ORCID,Lin Sizu12,Zhou Lili25ORCID

Affiliation:

1. Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China

3. College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China

4. Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi P.O. Box UP 63 KNUST, Ghana

5. College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China

Abstract

Chinese fir (Cunninghamia lanceolata) is the most cultivated timber species in China, with a plantation area of 11 million ha. Due to its extensive geographical distribution, drought stress caused by the spatial and seasonal heterogeneity of precipitation has limited its survival and productivity. To facilitate the breeding of drought-tolerant clones and understand the inter-response mechanisms to drought stress, we screened two drought-tolerant (DT) clones and evaluated their differences in physiological and molecular response to drought. The results showed that the No. 228 clone (high-DT ability) had higher antioxidant enzyme abilities than the No. 026 clone (low-DT ability) under drought stress, e.g., peroxidase (POD), polyphenol oxidase (PPO), superoxide dismutase (SOD), and catalase (CAT). Transcriptome analyses revealed that 6637 genes and 1168 genes were up-regulated in No. 228 and No. 026 under drought stress, respectively, when compared to the control (CK). The genes may participate in response to drought-stimulated signal transduction, water/oxygen-containing compound synthesis, photosynthesis, and transmembrane transport functions. Particularly, under drought stress, 14,213 up-regulated and differentially expressed genes (DEGs) were observed in the No. 228 clone compared with the No. 026 clone, and 4274 up-regulated genes were differentially expressed (15-fold difference). These significant DEGs were involved in plant hormone signal transduction, flavonoid biosynthesis, peroxisomes, and other key pathways related to drought. Interestingly, under drought stress, two Chitinases (ClCHIs) and four POD genes (ClPERs) were induced to express in No. 228, which was consistent with the higher antioxidant enzyme activities in No. 228. A heat map of 49 DEGs revealed that dehydrin family genes, ion binding/transmembrane proteins, auxin receptor proteins, and ethylene-responsive transcription factors were significantly up-regulated under drought stress. The results can enhance our understanding of drought tolerance mechanisms and provide a guideline for screening DT genes and breeding drought-tolerant Chinese fir clones.

Funder

National Natural Science Foundation of China

Forestry Science and Technology Project of Fujian Province

Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3