Molecular Pathways for Muscle and Adipose Tissue Are Altered between Beef Steers Classed as Choice or Standard

Author:

Haderlie Sarah A.1,Hieber Jordan K.1,Boles Jane A.1,Berardinelli James G.1,Thomson Jennifer M.1ORCID

Affiliation:

1. Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA

Abstract

Targets for finished livestock are often determined by expected fat, either subcutaneous or intramuscular. These targets are used frequently to improve eating quality. Lower intramuscular fat, lack of product uniformity, and insufficient tenderness can negatively impact beef acceptability. This study aimed to investigate the differences in gene expression that alter metabolism and intercellular signaling in the muscle and adipose tissue in beef carcasses at different fat endpoints. In this study, longissimus thoracis muscle samples and adipose tissue were collected at harvest, and RNA was extracted and then sequenced using RNAseq. Differential expression was determined using edgeR, and p-values were adjusted using the Benjamini–Hochberg method. A corrected p-value of 0.005 and log2 (fold change) of >1 were the threshold to identify differential expression. Comparison between intermuscular and subcutaneous fat showed no differences in the genes activated in the two adipose tissue depots, suggesting that subcutaneous fat was an adequate sample. Carcass data allowed the classification of carcasses by USDA quality grades (marbling targets). In comparing muscle from Standard and Choice carcasses, 15 genes were downregulated, and 20 were upregulated. There were 49 downregulated and 113 upregulated genes comparing adipose tissue from Standard and Choice carcasses. These genes are related to the metabolism of fat and energy. This indicates that muscle transcript expression varies less than adipose. In addition, subcutaneous fat can be used to evaluate transcript changes in fat. However, it is unclear whether these fat tissues can be used as surrogates for marbling.

Funder

Bair Ranch Foundation

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3